Further Maths – Preparation for Sixth Form

Congratulations on choosing to enter the wonderful world of Further Mathematics.

As well as understanding the fundamentals of the subject in more depth, you will be introduced to complex numbers, matrices, algorithms, hyperbolics, collisions and multi-dimensional space.

To make sure you are ready for this, you must have a strong understanding of algebra and geometry. You will gain this from thoroughly completing the work for 'Normal' Mathematics.

Rather than getting into the technicalities of some of these new ideas, we want you to understand the bigger picture behind the discipline.

Complete all of the 'Top 5' over the next five weeks.

Then there are a list of other suggestions. We are not expecting you to work your way through the list in order, and certainly wouldn't expect anyone to tackle all of them, but rather see what interests you and explore.

			Complete
	Mr Barker recommends	 What is maths? And how can we talk about an infinite number of objects/numbers if infinity is not itself a number? In Mathematics and Further Mathematics you will consider limits, what happens as we get infinitely big or infinitely small? And beyond that what are we talking about when we use numbers or sets? Is maths a tool, a language, art, all of the above? 	
Compulsory preparation work	Mr Hamilton recommends Mr Newton recommends	This short podcast is a great way to start thinking about these concepts with a mildly comedic undertone https://www.bbc.co.uk/sounds/play/b03kpy5c Simon Singh's documentary on Fermat's Last Theorem was so widely acclaimed that, even though first aired in 1995, it has had a lasting impact on those who saw it (or so I'm told by the older members of our department). It is <i>the</i> classic mathematics documentary and can be viewed here: https://www.bbc.co.uk/iplayer/episode/b0074rxx/horizon-19951996- fermats-last-theorem This video was shared with me by a student in Y12 who was researching fractals for an EPQ (Extended Project Qualification). EPQs are great, you get an opportunity to explore a subject you are interest in and also get a qualification that may support a university application or make your CV stand out. The video gives an interesting introduction into chaos and the Feigenbaum constant. It also touches on numerous interesting areas of mathematics such as fractals and complex numbers. https://www.youtube.com/watch?v=ovJcsL7vyrk&feature=youtu.be If this gives you an appetite to explore more, here is an introduction to Fractals: https://www.youtube.com/watch?v=w_MNQBWQ5DI	
		Here is an introduction to complex numbers, a big part of the Further Maths course): https://www.youtube.com/watch?v=hqr1DtXXHpy And here is a bit more on the Mandelbrot set from Numberphile:	
		https://www.youtube.com/watch?v=NGMRB4O922I	

Mas Statt	The mathematician Prof John Horton Conway died earlier this month. As well as contributing significantly to the development of notation in various fields of mathematics, he was a recreational mathematician who learnt through games.	
Mrs Stott recommends	Listen to this podcast:	
	https://www.bbc.co.uk/sounds/play/p08b9bcq	
	"Follow your curiousity – no matter how trivial it might be it might lead you somewhere unexpected. There is value in being idle The idle time allows you room to cogitate and ferment these ideas and unexpected things can emerge."	
	1. Play sprouts with someone in your household	
	Starting with a few spots on a sheet of paper, players take turns to draw a line between two spots (or from a spot to itself) adding a new spot somewhere along the line. The line may be straight or curved, but must not touch or cross itself or any other line. No spot may have more than three lines attached to it. The player who makes the last move wins.	
	Can you work out a strategy for winning the game? What are the maximum/minimum number of moves for n spots?	
	 2. Using a chessboard, or squared paper, use the first three starting points to recreate Game of Life. Every cell interacts with its eight neighbours - cells that are horizontally, vertically, or diagonally adjacent. At each step in time, the following transitions occur: 	
	Any live cell with two or three live neighbours survives.	
	Any dead cell with three live neighbours becomes a live cell.	
	All other live cells die in the next generation. Similarly, all other dead cells stay dead.	
	What do you notice?	
	If you want to take it further, try this one:	
	Many of the writers of The Simpsons and Futurama have mathematics backgrounds. Watch this explanation of the Futurama Theorem developed for the episode 'The Prisoner of Benda'.	
Dr Young recommends	https://www.youtube.com/watch?v=J65GNFfL94c	
	If you want to know more, you can read this paper on the result: <u>https://arxiv.org/pdf/1204.6086.pdf</u>	
	or this one generalising the result: <u>https://arxiv.org/pdf/1608.04809.pdf</u>	
	or see the book section for The Simpsons and their Mathematical Secrets.	

	Talks	TED Talks	
	Taiks	https://www.ted.com/playlists/189/math_talks_to_blow_your_mind	
		You must NEVER use the word 'math' but they are forgiven as this list	
		includes a talk by Benoit Mandelbrot, the father of fractals, and Marcus du	
		Sautoy talking about symmetry.	
		Gresham College Lectures	
		https://www.gresham.ac.uk/lectures/?subject=mathematics	
		A collection of traditional lectures on areas of mathematics. I enjoyed	
		'The Art of Maths'	
	Videos	60 Second Adventures in Thought	
		https://www.youtube.com/playlist?list=PL73A886F2DD959FF1	
		Six very short clips introducing you to some of the big ideas in philosophy,	
		mathematics and physics which are, at a fundamental level, very similar	
		disciplines. They may be only 60 seconds long, but I find I have to listen to	
		them twice to understand them fully.	
		Numerica	
		Numberphile https://www.youtube.com/channel/UCoxcjg-8xIDTYp3uz647V5A	
×			
/or	Dedeeste	A whole channel devoted to sharing mathematical ideas.	
5	Podcasts	More or Less <u>https://www.bbc.co.uk/sounds/brand/b006qshd</u>	
tio		Tim Harford explains - and sometimes debunks - the numbers and statistics	
arat		used in political debate, the news and everyday life	
eb		The Secrets of Mathematics	
pr		https://podcasts.ox.ac.uk/series/secrets-mathematics	
ted		Enter the world of contemporary mathematicians	
Suggested preparation work	Documentaries	Magic Numbers: Hannah Fry's Mysterious World of Maths	
igu	Documentaries	A three part documentary series exploring the mysteries of mathematics.	
S		https://www.youtube.com/watch?v=cyvDG8qjt-M	
		Simon Singh's documentary on Fermat's Last Theorem was so widely	
		acclaimed that, even though first aired in 1995, it has had a lasting impact	
		on those who saw it. It is <i>the</i> classic mathematics documentary and can be	
		viewed here:	
		https://www.bbc.co.uk/iplayer/episode/b0074rxx/horizon-19951996-	
		fermats-last-theorem	
		Marcus du Sautoy's The Music of the Primes	
		https://www.youtube.com/watch?v=hur5lk8fijA	
		Marcus du Sautoy's The Story of Maths	
		This series of four programmes explore the history of mathematics. You can	
		watch all four, or just dip in to the programme that most interests you. (My	
		favourite is episode 4 on the nature of infinity – if thinking about infinity	
		doesn't blow your mind, you have not understood it!) Not currently	
		available on iplayer but worth looking out for, or borrow the DVDs from	
1		school.	

Puzzles and Recreational Mathematics	thinking skills. Completing har and creative approach needed and on to degree level mather online. As well as the well-kno hanjie.	puzzles are a great way to stretch your logical oder problems helps to develop the resilience d for proof both in challenging topics at A level matics. There are lots of puzzles available own sudoku, try kakuro, killer sudoku and and activities to keep your mind active:
	https://nrich.maths.org/1457	
	How about joining a mathematics MOOC? They are free to access, but additional features such as tests can be unlocked with payment. There is one on recreational mathematics here: <u>https://www.futurelearn.com/courses/recreational-math</u>	
Films	A Beautiful Mind	The story of game theorist John Nash
	Good Will Hunting	Mathematics is more of a back drop in this one but still a good film
	Hidden Figures	The story of the NASA mathematicians who helped launch John Glenn into space
	The Imitation Game	The story of how cryptologist Alan Turing cracked the enigma code, shortening the second world war, including King Ecgbert alumnus, Matthew Beard
	The Man who Knew Infinity	The story of self-taught mathematician Ramanujan who collaborated with GH Hardy to produce some of the strangest results in Number Theory
	The Theory of Everything	Stephen Hawking may be more of a physicist than a mathematician, but it's a wonderful film, and the list would be incomplete without it

Books	Apostolos Doxiadis Uncle Petros and Goldbach's Conjecture
BOOKS	A novel with mathematics as an underlying theme.
	Marcus du Sautoy The Music of the Primes
	Du Sautoy has the ability to explain complex ideas simply. This book, about
	the building blocks of mathematics and Number Theory, also talks about the
	tantalising subject of unsolved problems in mathematics.
	Marcus du Sautoy Finding Moonshine
	Fantastic! Accessibly written and covering a wide range of topics. Essentially
	about symmetry and group theory, this book also explains what a
	mathematician does all day. I wish it had been written 20 years ago.
	Hannah Fry Hello World
	How to be human in the age of the machine – this book explores algorithms
	in the world around us.
	James Gleick Chaos: Making a New Science
	A description of the mysterious world of fractals and their applications to
	Chaos Theory, an extension of mechanics in which simple and complex
	causes interact, this book covers the big ideas in the study of chaos and the
	people behind its development.
	G H Hardy A Mathematician's Apology
	Refreshingly short. A must-read for anyone serious about mathematics
	Douglas G Hofstadter Godel, Escher, Bach: An Eternal Golden Braid
	A quirky look at the links between Mathematics, computer programming,
	logic, music, art. Chapters are interspersed with parodies on the work of
	Lewis Carroll. A love-it or hate-it book.
	Edward Hurst Bridging the Gap to University Mathematics
	Simon Singh Fermat's Last Theorem
	Fermat's Last Theorem was one of the most famous mathematical
	conundrums until in 1993 it was proved by Andrew Wiles. This book,
	stemming from the BBC Horizon film, talks about the history of the problem
	and gives biographical details of the characters involved in its solution.
	Simon Singh The Code Deals
	Simon Singh The Code Book The Code Book traces the fascinating development of codes and code-
	breaking from military espionage in Ancient Greece to modern computer
	ciphers, to reveal how the remarkable science of cryptography has often
	changed the course of history. With the Information Age bringing the
	possibility of a truly unbreakable code ever nearer, and cryptography one of
	the major debates of our times, Singh investigates the challenge that
	technology has brought to personal privacy today.
	Simon Singh The Simpsons and their Mathematical Secrets
	This is a bit more light-hearted but has some good maths in it. The chapters on Futurama (made by the same people as the Simpsons) are particularly
	good - one writer proved a new theorem especially for the plot an episode!
	A much more comprehensive list of recommended reading is available here
	(but the maths department haven't read all of them!):
	https://nrich.maths.org/9477